Creeping granular motion under variable gravity levels.
نویسندگان
چکیده
In a rotating tumbler that is more than one-half filled with a granular material, a core of material forms that should ideally rotate with the tumbler. However, the core rotates slightly faster than the tumbler (precession) and decreases in size (erosion). The precession and erosion of the core provide a measure of the creeping granular motion that occurs beneath a continuously flowing flat surface layer. Since the effect of gravity on the subsurface flow has not been explored, experiments were performed in a 63% to 83% full granular tumbler mounted in a large centrifuge that can provide very high g-levels. Two colors of 0.5 mm glass beads were filled side by side to mark a vertical line in the 45 mm radius quasi-two-dimensional tumbler. The rotation of the core with respect to the tumbler (precession) and the decrease in the size of the core (erosion) were monitored over 250 tumbler revolutions at accelerations between 1g and 12g. The flowing layer thickness is essentially independent of the g-level for identical Froude numbers, and the shear rate in the flowing layer increases with increasing g-level. The degree of core precession increases with the g-level, while the core erosion is essentially independent of the g-level. Based on a theory for core precession and erosion, the increased precession is likely a consequence of the higher shear rate. Core erosion, on the other hand, is related to the creep region decay constant, which is connected with slow diffusion in the bed and unaffected by gravity.
منابع مشابه
Numerical Simulations of Granular Dynamics Ii: Particle Dynamics in a Shaken Granular Material Journal Article
Surfaces of planets and small bodies of our Solar System are often covered by a layer of granular material that can range from a fine regolith to a gravel-like structure of varying depths. Therefore, the dynamics of granular materials are involved in many events occurring during planetary and small-body evolution thus contributing to their geological properties. We demonstrate that the new adap...
متن کاملNumerical simulations of granular dynamics II
Surfaces of planets and small bodies of our Solar System are often covered by a layer of granular material that can range from a fine regolith to a gravel-like structure of varying depths. Therefore, the dynamics of granular materials are involved in many events occurring during planetary and small-body evolution thus contributing to their geological properties. We demonstrate that the new adap...
متن کاملNumerical simulations of granular dynamics II : Particle dynamics in
Surfaces of planets and small bodies of our Solar System are often covered by a layer of granular material that can range from a fine regolith to a gravel-like structure of varying depths. Therefore, the dynamics of granular materials are involved in many events occurring during planetary and small-body evolution thus contributing to their geological properties. We demonstrate that the new adap...
متن کاملCapturing shock waves in inelastic granular gases
Shock waves in granular gases generated by either a vertically vibrated granular layer or by hitting an obstacle at rest are treated by means of a shock capturing scheme that approximates the Euler equations of granular gas dynamics with an equation of state (EOS), introduced by Goldshtein and Shapiro [ J. Fluid Mech. 282 (1995) 75], that takes into account the inelastic collisions of granules....
متن کاملNumerical simulations of granular dynamics II: Particle dynamics in a shaken granular material
0019-1035/$ see front matter 2012 Elsevier Inc. A http://dx.doi.org/10.1016/j.icarus.2012.03.006 ⇑ Corresponding author at: Laboratoire Lagrange (U Sophia Antipolis, CNRS, Observatoire de la Côte d’Azur 4, France. Fax: +33 4 9200 3058. E-mail address: [email protected] (N. Murdoch). Surfaces of planets and small bodies of our Solar System are often covered by a layer of granular material that can ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 74 3 Pt 1 شماره
صفحات -
تاریخ انتشار 2006